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Cache Memories
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Today
¢ Cache memory organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality
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Example Memory 
Hierarchy Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers

L2 cache 
(SRAM)

L1 cache holds cache lines 
retrieved from the L2 cache.

CPU registers hold words 
retrieved from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds 
disk blocks retrieved 
from local disks.
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General Cache Concept

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory

viewed as partitioned into “blocks”

Data is copied in block-sized 

transfer units

Smaller, faster, more expensive

memory caches a  subset of

the blocks

4

4

4

10

10

10
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Cache Memories
¢ Cache memories are small, fast SRAM-based memories 

managed automatically in hardware
§ Hold frequently accessed blocks of main memory

¢ CPU looks first for data in cache
¢ Typical system structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache 
memory
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General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit
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Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset
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Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag
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Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

int (4 Bytes) is here

block offset

If tag doesn’t match: old line is evicted and replaced
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Direct-Mapped Cache Simulation
M=16 bytes (4-bit addresses), B=2 bytes/block, 
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

tag
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

short int (2 Bytes) is here

No match: 
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …
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2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block, 
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1
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¢ Multiple copies of data exist:
§ L1, L2, L3, Main Memory, Disk

¢ What to do on a write-hit?
§ Write-through (write immediately to memory)
§ Write-back (defer write to memory until replacement of line)

§ Need a dirty bit (line different from memory or not)
¢ What to do on a write-miss?

§ Write-allocate (load into cache, update line in cache)
§ Good if more writes to the location follow

§ No-write-allocate (writes straight to memory, does not load into cache)
¢ Typical

§ Write-through + No-write-allocate
§ Write-back + Write-allocate

What about writes?
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Intel Core i7 Cache Hierarchy

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB,  8-way, 
Access: 4 cycles

L2 unified cache:
256 KB, 8-way, 

Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for 
all caches. 
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Cache Performance Metrics
¢ Miss Rate

§ Fraction of memory references not found in cache (misses / accesses)
= 1 – hit rate

§ Typical numbers (in percentages):
§ 3-10% for L1
§ can be quite small (e.g., < 1%) for L2, depending on size, etc.

¢ Hit Time
§ Time to deliver a line in the cache to the processor

§ includes time to determine whether the line is in the cache
§ Typical numbers:

§ 4 clock cycle for L1
§ 10 clock cycles for L2

¢ Miss Penalty
§ Additional time required because of a miss

§ typically 50-200 cycles for main memory (Trend: increasing!)
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Let’s think about those numbers
¢ Huge difference between a hit and a miss

§ Could be 100x, if just L1 and main memory

¢ Would you believe 99% hits is twice as good as 97%?
§ Consider: 

cache hit time of 1 cycle
miss penalty of 100 cycles

§ Average access time:
97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles

¢ This is why “miss rate” is used instead of “hit rate”
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Writing Cache Friendly Code
¢ Make the common case go fast

§ Focus on the inner loops of the core functions

¢ Minimize the misses in the inner loops
§ Repeated references to variables are good (temporal locality)
§ Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified 
through our understanding of cache memories
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Today
¢ Cache organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality
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The Memory Mountain
¢ Read throughput (read bandwidth)

§ Number of bytes read from memory per second (MB/s)

¢ Memory mountain: Measured read throughput as a function 
of spatial and temporal locality.
§ Compact way to characterize memory system performance. 
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Memory Mountain Test Function
long data[MAXELEMS];  /* Global array to traverse */

/* test - Iterate over first "elems" elements of
*        array “data” with stride of "stride", using 
*        using 4x4 loop unrolling.                                                            
*/
int test(int elems, int stride) {

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */
for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; i < length; i++) {

acc0 = acc0 + data[i];
}
return ((acc0 + acc1) + (acc2 + acc3));

}

Call test() with many 
combinations of elems
and stride.

For each elems
and stride:

1. Call test() 
once to warm up 
the caches.

2. Call test() 
again and measure 
the read 
throughput(MB/s)

mountain/mountain.c
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The Memory Mountain

128m
32m

8m
2m

512k
128k

32k
0
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Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes 
of spatial 
locality

Ridges 
of temporal 
locality

L1

Mem

L2

L3

Aggressive 
prefetching
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Today
¢ Cache organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality
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Matrix Multiplication Example
¢ Description:

§ Multiply N x N matrices
§ Matrix elements are 

doubles (8 bytes)
§ O(N3) total operations
§ N reads per source 

element
§ N values summed per 

destination
§ but may be able to 

hold in register

/* ijk */
for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

} 

Variable sum
held in register

matmult/mm.c



647

Miss Rate Analysis for Matrix Multiply
¢ Assume:

§ Block size = 32B (big enough for four doubles)
§ Matrix dimension (N) is very large

§ Approximate 1/N as 0.0
§ Cache is not even big enough to hold multiple rows

¢ Analysis Method:
§ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x
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Layout of C Arrays in Memory (review)
¢ C arrays allocated in row-major order

§ each row in contiguous memory locations
¢ Stepping through columns in one row:

§ for (i = 0; i < N; i++)
sum += a[0][i];

§ accesses successive elements
§ if block size (B) > sizeof(aij) bytes, exploit spatial locality

§ miss rate = sizeof(aij) / B
¢ Stepping through rows in one column:

§ for (i = 0; i < n; i++)
sum += a[i][0];

§ accesses distant elements
§ no spatial locality!

§ miss rate = 1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

} 

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

matmult/mm.c
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Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum
}

}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

matmult/mm.c
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Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

matmult/mm.c
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Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

matmult/mm.c
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Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

matmult/mm.c
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Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
for (j=0; j<n; j++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

matmult/mm.c
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Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj): 
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji): 
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}
} 

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];   

}
}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}
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Core i7 Matrix Multiply Performance
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Today
¢ Cache organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality
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Example: Matrix Multiplication

a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];
}
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Cache Miss Analysis
¢ Assume: 

§ Matrix elements are doubles
§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)

¢ First iteration:
§ n/8 + n = 9n/8 misses

§ Afterwards in cache:
(schematic)

*=

n

*=
8 wide
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Cache Miss Analysis
¢ Assume: 

§ Matrix elements are doubles
§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)

¢ Second iteration:
§ Again:

n/8 + n = 9n/8 misses

¢ Total misses:
§ 9n/8 * n2 = (9/8) * n3

n

*=
8 wide
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Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */
for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)
for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*
c

=
c

+

Block size B x B

matmult/bmm.c
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Cache Miss Analysis
¢ Assume: 

§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)
§ Three blocks       fit into cache: 3B2 < C

¢ First (block) iteration:
§ B2/8 misses for each block
§ 2n/B * B2/8 = nB/4

(omitting matrix c)

§ Afterwards in cache
(schematic)

*=

*=

Block size B x B

n/B blocks
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Cache Miss Analysis
¢ Assume: 

§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)
§ Three blocks       fit into cache: 3B2 < C

¢ Second (block) iteration:
§ Same as first iteration
§ 2n/B * B2/8 = nB/4

¢ Total misses:
§ nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks
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Blocking Summary

¢ No blocking: (9/8) * n3

¢ Blocking: 1/(4B) * n3

¢ Suggest largest possible block size B, but limit 3B2 < C!

¢ Reason for dramatic difference:
§ Matrix multiplication has inherent temporal locality:

§ Input data: 3n2, computation 2n3

§ Every array elements used O(n) times!
§ But program has to be written properly
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Cache Summary
¢ Cache memories can have significant performance impact

¢ You can write your programs to exploit this!
§ Focus on the inner loops, where bulk of computations and memory 

accesses occur. 
§ Try to maximize spatial locality by reading data objects with 

sequentially with stride 1.
§ Try to maximize temporal locality by using a data object as often as 

possible once it’s read from memory. 
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Linking
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Today
¢ Linking
¢ Case study: Library interpositioning
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Example C Program

int sum(int *a, int n);

int array[2] = {1, 2};

int main()
{

int val = sum(array, 2);
return val;

}

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

}
main.c sum.c
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x86-64 Linux Memory Layout
¢ Stack

§ Runtime stack (8MB limit)
§ E. g., local variables

¢ Heap
§ Dynamically allocated as needed
§ When call  malloc(), calloc(), new

¢ Data
§ Statically allocated data
§ E.g., global vars, static vars, string constants

¢ Text  / Shared Libraries
§ Executable machine instructions
§ Read-only

Hex Address

00007FFFFFFFFFFF

000000

Stack

Text
Data

Heap

400000

8MB

not drawn to scale

Shared
Libraries
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Static Linking
¢ Programs are translated and linked using a compiler driver:

§ linux> gcc -Og -o prog main.c sum.c
§ linux> ./prog

Linker (ld)

Translators
(cpp, cc1, as)

main.c

main.o

Translators
(cpp, cc1, as)

sum.c

sum.o

prog

Source files

Separately compiled
relocatable object files

Fully linked executable object file
(contains code and data for all functions
defined in main.c and sum.c)
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Why Linkers?
¢ Reason 1: Modularity

§ Program can be written as a collection of smaller source files, rather 
than one monolithic mass.

§ Can build libraries of common functions (more on this later)
§ e.g., Math library, standard C library
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Why Linkers? (cont)
¢ Reason 2: Efficiency

§ Time: Separate compilation
§ Change one source file, compile, and then relink.
§ No need to recompile other source files.

§ Space: Libraries 
§ Common functions can be aggregated into a single file...
§ Yet executable files and running memory images contain only code 

for the functions they actually use.



673

¢ Step 1: Symbol resolution

§ Programs define and reference symbols (global variables and functions):
§ void swap() {…}   /* define symbol swap */
§ swap();           /* reference symbol swap */
§ int *xp = &x;     /* define symbol xp, reference x */

§ Symbol definitions are stored in object file (by assembler) in symbol table.
§ Symbol table is an array of structs
§ Each entry includes name, size, and location of symbol.

§ During symbol resolution step, the linker associates each symbol reference 
with exactly one symbol definition.

What Do Linkers Do?
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What Do Linkers Do? (cont)
¢ Step 2: Relocation

§ Merges separate code and data sections into single sections

§ Relocates symbols from their relative locations in the .o files to their 
final absolute memory locations in the executable.

§ Updates all references to these symbols to reflect their new positions.

Let’s look at these two steps in more detail….
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Three Kinds of Object Files (Modules)
¢ Relocatable object file (.o file)

§ Contains code and data in a form that can be combined with other 
relocatable object files to form executable object file.
§ Each .o file is produced from exactly one source (.c) file

¢ Executable object file (a.out file)
§ Contains code and data in a form that can be copied directly into 

memory and then executed.

¢ Shared object file (.so file)
§ Special type of relocatable object file that can be loaded into memory 

and linked dynamically, at either load time or run-time.
§ Called Dynamic Link Libraries (DLLs) by Windows
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Executable and Linkable Format (ELF)
¢ Standard binary format for object files

¢ One unified format for 
§ Relocatable object files (.o), 
§ Executable object files (a.out)
§ Shared object files (.so)

¢ Generic name: ELF binaries
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ELF Object File Format
¢ Elf header

§ Word size, byte ordering, file type (.o, exec, 
.so), machine type, etc.

¢ Segment header table
§ Page size, virtual addresses memory segments 

(sections), segment sizes.

¢ .text section
§ Code

¢ .rodata section
§ Read only data: jump tables, ...

¢ .data section
§ Initialized global variables

¢ .bss section
§ Uninitialized global variables
§ “Block Started by Symbol”
§ “Better Save Space”
§ Has section header but occupies no space

ELF header

Segment header table
(required for executables)

.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

0

.data section
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ELF Object File Format (cont.)
¢ .symtab section

§ Symbol table
§ Procedure and static variable names
§ Section names and locations

¢ .rel.text section
§ Relocation info for .text section
§ Addresses of instructions that will need to be 

modified in the executable
§ Instructions for modifying.

¢ .rel.data section
§ Relocation info for .data section
§ Addresses of pointer data that will need to be 

modified in the merged executable

¢ .debug section
§ Info for symbolic debugging (gcc -g)

¢ Section header table
§ Offsets and sizes of each section

ELF header

Segment header table
(required for executables)

.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

0

.data section
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Linker Symbols
¢ Global symbols

§ Symbols defined by module m that can be referenced by other modules.
§ E.g.: non-static C functions and non-static global variables.

¢ External symbols
§ Global symbols that are referenced by module m but defined by some 

other module.

¢ Local symbols
§ Symbols that are defined and referenced exclusively by module m.
§ E.g.: C functions and global variables defined with the static

attribute.
§ Local linker symbols are not local program variables
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Step 1: Symbol Resolution

int sum(int *a, int n);

int array[2] = {1, 2};

int main()
{

int val = sum(array, 2);
return val;

} main.c

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

} sum.c

Referencing 
a global…

Defining 
a global

Linker knows
nothing of val

Referencing
a global…

…that’s defined here

Linker knows
nothing of i or s

…that’s defined here
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Local Symbols
¢ Local non-static C variables vs. local static C variables

§ local non-static C variables: stored on the stack 
§ local static C variables: stored in either .bss, or .data

int f()
{

static int x = 0;
return x;

}

int g()
{

static int x = 1;
return x;

}

Compiler allocates space in .data for 
each definition of x

Creates local symbols in the symbol 
table with unique names, e.g., x.1
and x.2.
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How Linker Resolves Duplicate Symbol 
Definitions

¢ Program symbols are either strong or weak
§ Strong: procedures and initialized globals
§ Weak: uninitialized globals

int foo=5;

p1() {
}

int foo;

p2() {
}

p1.c p2.c

strong

weak

strong

strong
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Linker’s Symbol Rules
¢ Rule 1: Multiple strong symbols are not allowed

§ Each item can be defined only once
§ Otherwise: Linker error

¢ Rule 2: Given a strong symbol and multiple weak symbols, 
choose the strong symbol
§ References to the weak symbol resolve to the strong symbol

¢ Rule 3: If there are multiple weak symbols, pick an arbitrary 
one
§ Can override this with gcc –fno-common
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Linker Puzzles

int x;
p1() {}

int x;
p2() {}

int x;
int y;
p1() {}

double x;
p2() {}

int x=7;
int y=5;
p1() {}

double x;
p2() {}

int x=7;
p1() {}

int x;
p2() {}

int x;
p1() {} p1() {} Link time error: two strong symbols (p1)

References to  x will refer to the same 
uninitialized int. Is this what you really want?

Writes to x in p2 might overwrite y!
Evil!

Writes to x in p2 will overwrite y!
Nasty! 

Nightmare scenario: two identical weak structs, compiled by different compilers
with different alignment rules. 

References to x will refer to the same initialized
variable.
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Global Variables
¢ Avoid if you can

¢ Otherwise
§ Use static if you can
§ Initialize if you define a global variable
§ Use extern if you reference an external global variable
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Step 2: Relocation

main()

main.o

sum()

sum.o

System code

int array[2]={1,2}

System data

Relocatable Object Files

.text

.data

.text

.data

.text

Headers

main()

sum()

0

More system code

Executable Object File

.text

.symtab
.debug

.data

System code

System data
int array[2]={1,2}
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Relocation Entries

Source: objdump –r –d main.o

0000000000000000 <main>:
0:   48 83 ec 08             sub    $0x8,%rsp
4:   be 02 00 00 00          mov $0x2,%esi
9:   bf 00 00 00 00          mov    $0x0,%edi      # %edi = &array

a: R_X86_64_32 array          # Relocation entry

e:   e8 00 00 00 00          callq 13 <main+0x13> # sum()
f: R_X86_64_PC32 sum-0x4      # Relocation entry

13:   48 83 c4 08             add    $0x8,%rsp
17:   c3                      retq

main.o

int array[2] = {1, 2};

int main()
{

int val = sum(array, 2);
return val;

} main.c



688

Relocated .text section
00000000004004d0 <main>:
4004d0:       48 83 ec 08       sub    $0x8,%rsp
4004d4:       be 02 00 00 00    mov $0x2,%esi
4004d9:       bf 18 10 60 00    mov    $0x601018,%edi  # %edi = &array
4004de:       e8 05 00 00 00    callq 4004e8 <sum>    # sum()
4004e3:       48 83 c4 08       add    $0x8,%rsp
4004e7:       c3                retq

00000000004004e8 <sum>:
4004e8:       b8 00 00 00 00          mov    $0x0,%eax
4004ed:       ba 00 00 00 00          mov    $0x0,%edx
4004f2:       eb 09                   jmp 4004fd <sum+0x15>
4004f4:       48 63 ca                movslq %edx,%rcx
4004f7:       03 04 8f                add    (%rdi,%rcx,4),%eax
4004fa:       83 c2 01                add    $0x1,%edx
4004fd:       39 f2                   cmp %esi,%edx
4004ff:       7c f3                   jl 4004f4 <sum+0xc>
400501:       f3 c3                   repz retq

Using PC-relative addressing for sum():  0x4004e8 = 0x4004e3 + 0x5

Source: objdump -dx prog
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Loading Executable Object Files

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.debug

Section header table
(required for relocatables)

0
Executable Object File Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack 
pointer)

Memory
invisible to 
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded 
from 
the 
executable 
file

.rodata section

.line

.init section

.strtab



690

Packaging Commonly Used Functions
¢ How to package functions commonly used by programmers?

§ Math, I/O, memory management, string manipulation, etc.

¢ Awkward, given the linker framework so far:
§ Option 1: Put all functions into a single source file

§ Programmers link big object file into their programs
§ Space and time inefficient

§ Option 2: Put each function in a separate source file
§ Programmers explicitly link appropriate binaries into their 

programs
§ More efficient, but burdensome on the programmer
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Old-fashioned Solution: Static Libraries
¢ Static libraries (.a archive files)

§ Concatenate related relocatable object files into a single file with an 
index (called an archive).

§ Enhance linker so that it tries to resolve unresolved external references 
by looking for the symbols in one or more archives.

§ If an archive member file resolves reference, link it  into the executable.
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Creating Static Libraries

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

unix> ar rs libc.a \
atoi.o printf.o … random.o

C standard library

¢ Archiver allows incremental updates
¢ Recompile function that changes and replace .o file in archive.
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Commonly Used Libraries
libc.a (the C standard library)

§ 4.6 MB archive of 1496 object files.
§ I/O, memory allocation, signal handling, string handling, data and time, 

random numbers, integer math

libm.a (the C math library)
§ 2 MB archive of 444 object files. 
§ floating point math (sin, cos, tan, log, exp, sqrt, …) 

% ar –t libc.a | sort 
…
fork.o
… 
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
…

% ar –t libm.a | sort 
…
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinl.o
…
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Linking with 
Static Libraries

#include <stdio.h>
#include "vector.h"

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()
{

addvec(x, y, z, 2);
printf("z = [%d %d]\n”,

z[0], z[1]);
return 0;

} main2.c

void addvec(int *x, int *y,
int *z, int n) {

int i;

for (i = 0; i < n; i++)
z[i] = x[i] + y[i];

}

void multvec(int *x, int *y,
int *z, int n)

{
int i;

for (i = 0; i < n; i++)
z[i] = x[i] * y[i];

} multvec.c

addvec.c

libvector.a
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Linking with Static Libraries

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.a

Linker (ld)

prog2c

printf.o and any other 
modules called by printf.o

libvector.a

addvec.o

Static libraries

Relocatable
object files

Fully linked 
executable object file

vector.h Archiver
(ar)

addvec.o multvec.o

“c” for “compile-time”
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Using Static Libraries

¢ Linker’s algorithm for resolving external references:
§ Scan .o files and .a files in the command line order.
§ During the scan, keep a list of the current unresolved references.
§ As each new .o or .a file, obj, is encountered, try to resolve each 

unresolved reference in the list against the symbols defined in obj. 
§ If any entries in the unresolved list at end of scan, then error.

¢ Problem:
§ Command line order matters!
§ Moral: put libraries at the end of the command line. 

unix> gcc -L. libtest.o -lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function `main': 
libtest.o(.text+0x4): undefined reference to `libfun' 
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Modern Solution: Shared Libraries
¢ Static libraries have the following disadvantages:

§ Duplication in the stored executables (every function needs libc)
§ Duplication in the running executables
§ Minor bug fixes of system libraries require each application to explicitly 

relink

¢ Modern solution: Shared Libraries 
§ Object files that contain code and data that are loaded and linked into 

an application dynamically, at either load-time or run-time
§ Also called: dynamic link libraries, DLLs, .so files
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Shared Libraries (cont.)
¢ Dynamic linking can occur when executable is first loaded 

and run (load-time linking).
§ Common case for Linux, handled automatically by the dynamic linker 

(ld-linux.so).
§ Standard C library (libc.so) usually dynamically linked. 

¢ Dynamic linking can also occur after program has begun 
(run-time linking).
§ In Linux, this is done by calls to the dlopen() interface.

§ Distributing software.
§ High-performance web servers. 
§ Runtime library interpositioning.

¢ Shared library routines can be shared by multiple processes.
§ More on this when we learn about virtual memory
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Dynamic Linking at Load-time

Translators 
(cpp, cc1, as)

main2.c

main2.o

libc.so
libvector.so

Linker (ld)

prog2l

Dynamic linker (ld-linux.so)

Relocation and symbol  
table info

libc.so
libvector.so

Code and data

Partially linked 
executable object file

Relocatable
object file

Fully linked 
executable
in memory

vector.h

Loader 
(execve)

unix> gcc -shared -o libvector.so \
addvec.c multvec.c
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Dynamic Linking at Run-time
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()
{

void *handle;
void (*addvec)(int *, int *, int *, int);
char *error;

/* Dynamically load the shared library that contains addvec() */
handle = dlopen("./libvector.so", RTLD_LAZY);
if (!handle) {

fprintf(stderr, "%s\n", dlerror());
exit(1);

} dll.c
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Dynamic Linking at Run-time
...

/* Get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec");
if ((error = dlerror()) != NULL) {

fprintf(stderr, "%s\n", error);
exit(1);

}

/* Now we can call addvec() just like any other function */
addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0], z[1]);

/* Unload the shared library */
if (dlclose(handle) < 0) {

fprintf(stderr, "%s\n", dlerror());
exit(1);

}
return 0;

} dll.c
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Linking Summary
¢ Linking is a technique that allows programs to be constructed 

from multiple object files. 

¢ Linking can happen at different times in a program’s lifetime:
§ Compile time (when a program is compiled)
§ Load time (when a program is loaded into memory)
§ Run time (while a program is executing)

¢ Understanding linking can help you avoid nasty errors and 
make you a better programmer. 
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Today
¢ Linking
¢ Case study: Library interpositioning
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Case Study: Library Interpositioning
¢ Library interpositioning : powerful linking technique that 

allows programmers to intercept calls to arbitrary functions
¢ Interpositioning can occur at:

§ Compile time: When the source code is compiled
§ Link time: When the relocatable object files are statically linked to form 

an executable object file
§ Load/run time: When an executable object file is loaded into memory, 

dynamically linked, and then executed.
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Some Interpositioning Applications
¢ Security

§ Confinement (sandboxing)

§ Behind the scenes encryption

¢ Debugging
§ In 2014, two Facebook engineers debugged a treacherous 1-year old 

bug in their iPhone app using interpositioning

§ Code in the SPDY networking stack was writing to the wrong location

§ Solved by intercepting calls to Posix write functions (write, writev, 
pwrite)

Source:  Facebook engineering blog post at 
https://code.facebook.com/posts/313033472212144/debugging-file-
corruption-on-ios/
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Some Interpositioning Applications
¢ Monitoring and Profiling

§ Count number of calls to functions
§ Characterize call sites and arguments to functions
§ Malloc tracing

§ Detecting memory leaks
§ Generating address traces
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Example program

¢ Goal: trace the addresses 
and sizes of the allocated 
and freed blocks, without 
breaking the program, and 
without modifying the 
source code. 

¢ Three solutions: interpose 
on the lib malloc and 
free functions at compile 
time, link time, and 
load/run time. 

#include <stdio.h>
#include <malloc.h>

int main()
{

int *p = malloc(32);
free(p);
return(0);

} int.c
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Compile-time Interpositioning
#ifdef COMPILETIME
#include <stdio.h>
#include <malloc.h>

/* malloc wrapper function */
void *mymalloc(size_t size)
{

void *ptr = malloc(size);
printf("malloc(%d)=%p\n",

(int)size, ptr);
return ptr;

}

/* free wrapper function */
void myfree(void *ptr)
{

free(ptr);
printf("free(%p)\n", ptr);

}
#endif mymalloc.c
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Compile-time Interpositioning

#define malloc(size) mymalloc(size)
#define free(ptr) myfree(ptr)

void *mymalloc(size_t size);
void myfree(void *ptr);

malloc.h

linux> make intc
gcc -Wall -DCOMPILETIME -c mymalloc.c
gcc -Wall -I. -o intc int.c mymalloc.o
linux> make runc
./intc
malloc(32)=0x1edc010
free(0x1edc010)
linux>
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Link-time Interpositioning
#ifdef LINKTIME
#include <stdio.h>

void *__real_malloc(size_t size);
void __real_free(void *ptr);

/* malloc wrapper function */
void *__wrap_malloc(size_t size)
{

void *ptr = __real_malloc(size); /* Call libc malloc */
printf("malloc(%d) = %p\n", (int)size, ptr);
return ptr;

}

/* free wrapper function */
void __wrap_free(void *ptr)
{

__real_free(ptr); /* Call libc free */
printf("free(%p)\n", ptr);

}
#endif mymalloc.c
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Link-time Interpositioning

¢ The “-Wl” flag passes argument to linker, replacing each 
comma with a space. 

¢ The  “--wrap,malloc ” arg instructs linker to resolve 
references in a special way:
§ Refs to malloc should be resolved as __wrap_malloc
§ Refs to __real_malloc should be resolved as malloc

linux> make intl
gcc -Wall -DLINKTIME -c mymalloc.c
gcc -Wall -c int.c
gcc -Wall -Wl,--wrap,malloc -Wl,--wrap,free -o intl
int.o mymalloc.o
linux> make runl
./intl
malloc(32) = 0x1aa0010
free(0x1aa0010)
linux> 
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#ifdef RUNTIME
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

/* malloc wrapper function */
void *malloc(size_t size)
{

void *(*mallocp)(size_t size);
char *error;

mallocp = dlsym(RTLD_NEXT, "malloc"); /* Get addr of libc malloc */
if ((error = dlerror()) != NULL) {

fputs(error, stderr);
exit(1);

}
char *ptr = mallocp(size); /* Call libc malloc */
printf("malloc(%d) = %p\n", (int)size, ptr);
return ptr;

}

Load/Run-time 
Interpositioning

mymalloc.c
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Load/Run-time Interpositioning

/* free wrapper function */
void free(void *ptr)
{

void (*freep)(void *) = NULL;
char *error;

if (!ptr)
return;

freep = dlsym(RTLD_NEXT, "free"); /* Get address of libc free */
if ((error = dlerror()) != NULL) {

fputs(error, stderr);
exit(1);

}
freep(ptr); /* Call libc free */
printf("free(%p)\n", ptr);

}
#endif

mymalloc.c



714

Load/Run-time Interpositioning

¢ The LD_PRELOAD environment variable tells the dynamic 
linker to resolve unresolved refs (e.g., to malloc)by looking 
in mymalloc.so first.

linux> make intr
gcc -Wall -DRUNTIME -shared -fpic -o mymalloc.so mymalloc.c -ldl
gcc -Wall -o intr int.c
linux> make runr
(LD_PRELOAD="./mymalloc.so" ./intr)
malloc(32) = 0xe60010
free(0xe60010)
linux>
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Interpositioning Recap
¢ Compile Time

§ Apparent calls to malloc/free get macro-expanded into calls to 
mymalloc/myfree

¢ Link Time
§ Use linker trick to have special name resolutions

§ malloc à __wrap_malloc
§ __real_malloc à malloc

¢ Load/Run Time
§ Implement custom version of malloc/free that use dynamic linking to 

load library malloc/free under different names
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Exceptional Control Flow: 
Exceptions and Processes
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Today
¢ Exceptional Control Flow
¢ Exceptions
¢ Processes
¢ Process Control
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Control Flow

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

¢ Processors do only one thing:
§ From startup to shutdown, a CPU simply reads and executes 

(interprets) a sequence of instructions, one at a time
§ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time
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Altering the Control Flow
¢ Up to now: two mechanisms for changing control flow:

§ Jumps and branches
§ Call and return
React to changes in program state

¢ Insufficient  for a useful system: 
Difficult to react to changes in system state 
§ Data arrives from a disk or a network adapter
§ Instruction divides by zero
§ User hits Ctrl-C at the keyboard
§ System timer expires

¢ System needs mechanisms for “exceptional control flow”
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Exceptional Control Flow
¢ Exists at all levels of a computer system
¢ Low level mechanisms

§ 1. Exceptions 
§ Change in control flow in response to a system event 

(i.e.,  change in system state)
§ Implemented using combination of hardware and OS software

¢ Higher level mechanisms
§ 2. Process context switch

§ Implemented by OS software and hardware timer
§ 3. Signals

§ Implemented by OS software 
§ 4. Nonlocal jumps: setjmp() and longjmp()

§ Implemented by C runtime library
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Today
¢ Exceptional Control Flow
¢ Exceptions
¢ Processes
¢ Process Control
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Exceptions
¢ An exception is a transfer of control to the OS kernel in response 

to some event (i.e., change in processor state)
§ Kernel is the memory-resident part of the OS
§ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O 

request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next
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0
1
2 ...

n-1

Exception Tables

¢ Each type of event has a 
unique exception number k

¢ k = index into exception table 
(a.k.a. interrupt vector)

¢ Handler k is called each time 
exception k occurs

Exception
Table

Code for  
exception handler 0

Code for 
exception handler 1

Code for
exception handler 2

Code for 
exception handler n-1

...

Exception 
numbers
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Asynchronous Exceptions (Interrupts)
¢ Caused by events external to the processor

§ Indicated by setting the processor’s interrupt pin
§ Handler returns to “next” instruction

¢ Examples:
§ Timer interrupt

§ Every few ms, an external timer chip triggers an interrupt
§ Used by the kernel to take back control from user programs

§ I/O interrupt from external device
§ Hitting Ctrl-C at the keyboard
§ Arrival of a packet from a network
§ Arrival of data from a disk
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Synchronous Exceptions
¢ Caused by events that occur as a result of executing an 

instruction:
§ Traps

§ Intentional
§ Examples: system calls, breakpoint traps, special instructions
§ Returns control to “next” instruction

§ Faults
§ Unintentional but possibly recoverable 
§ Examples: page faults (recoverable), protection faults 

(unrecoverable), floating point exceptions
§ Either re-executes faulting (“current”) instruction or aborts

§ Aborts
§ Unintentional and unrecoverable
§ Examples: illegal instruction, parity error, machine check
§ Aborts current program
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System Calls

Number Name Description
0 read Read file
1 write Write file
2 open Open file
3 close Close file
4 stat Get info about file
57 fork Create process
59 execve Execute a program
60 _exit Terminate process
62 kill Send signal to process

¢ Each x86-64 system call has a unique ID number
¢ Examples:
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System Call Example: Opening File
¢ User calls: open(filename, options)
¢ Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79:   b8 02 00 00 00      mov  $0x2,%eax  # open is syscall #2
e5d7e:   0f 05               syscall # Return value in %rax
e5d80:   48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax 
...
e5dfa:   c3                  retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

¢ %rax contains syscall number
¢ Other arguments in %rdi, 

%rsi, %rdx, %r10, %r8, %r9
¢ Return value in %rax
¢ Negative value is an error 

corresponding to negative 
errno



728

Fault Example: Page Fault
¢ User writes to memory location
¢ That portion (page) of user’s memory 

is currently on disk

int a[1000];
main ()
{

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl   $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from 
disk to memoryReturn and 

reexecute movl

movl
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Fault Example: Invalid Memory Reference

¢ Sends SIGSEGV signal to user process
¢ User process exits with “segmentation fault”

int a[1000];
main ()
{

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl   $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address
movl

Signal process
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Today
¢ Exceptional Control Flow
¢ Exceptions
¢ Processes
¢ Process Control
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Processes
¢ Definition: A process is an instance of a running 

program.
§ One of the most profound ideas in computer science
§ Not the same as “program” or “processor”

¢ Process provides each program with two key 
abstractions:
§ Logical control flow

§ Each program seems to have exclusive use of the CPU
§ Provided by kernel mechanism called context switching

§ Private address space
§ Each program seems to have exclusive use of main 

memory. 
§ Provided by kernel mechanism called virtual memory

CPU
Registers

Memory
Stack
Heap

Code
Data
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Multiprocessing: The Illusion

¢ Computer runs many processes simultaneously
§ Applications for one or more users

§ Web browsers, email clients, editors, …
§ Background tasks

§ Monitoring network & I/O devices

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data
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Multiprocessing Example

¢ Running program “top” on Mac
§ System has 123 processes, 5 of which are active
§ Identified by Process ID (PID)
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Multiprocessing: The (Traditional) Reality

¢ Single processor executes multiple processes concurrently
§ Process executions interleaved (multitasking) 
§ Address spaces managed by virtual memory system (later in course)
§ Register values for nonexecuting processes saved in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers

…
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Multiprocessing: The (Traditional) Reality

¢ Save current registers in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers

…
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Multiprocessing: The (Traditional) Reality

¢ Schedule next process for execution

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers

…
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Multiprocessing: The (Traditional) Reality

¢ Load saved registers and switch address space (context switch)

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers

…
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Multiprocessing: The (Modern) Reality

¢ Multicore processors
§ Multiple CPUs on single chip
§ Share main memory (and some of 

the caches)
§ Each can execute a separate process

§ Scheduling of processors onto 
cores done by kernel

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers

…

CPU
Registers
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Concurrent Processes
¢ Each process is a logical control flow. 
¢ Two processes run concurrently (are concurrent) if their 

flows overlap in time
¢ Otherwise, they are sequential
¢ Examples (running on single core):

§ Concurrent: A & B, A & C
§ Sequential: B & C

Process A Process B Process C

Time
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User View of Concurrent Processes
¢ Control flows for concurrent processes are physically 

disjoint in time

¢ However, we can think of concurrent processes as 
running in parallel with each other

Time

Process A Process B Process C
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Context Switching
¢ Processes are managed by a shared chunk of memory-

resident OS code called the kernel
§ Important: the kernel is not a separate process, but rather runs as part 

of some existing process.

¢ Control flow passes from one process to another via a 
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time
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Today
¢ Exceptional Control Flow
¢ Exceptions
¢ Processes
¢ Process Control
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System Call Error Handling
¢ On error, Linux system-level functions typically return -1 and 

set global variable errno to indicate cause. 
¢ Hard and fast rule: 

§ You must check the return status of every system-level function
§ Only exception is the handful of functions that return void

¢ Example:

if ((pid = fork()) < 0) {
fprintf(stderr, "fork error: %s\n", strerror(errno));
exit(0);

}
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Error-reporting functions
¢ Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */
{

fprintf(stderr, "%s: %s\n", msg, strerror(errno));
exit(0);

}

if ((pid = fork()) < 0)
unix_error("fork error");
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Error-handling Wrappers
¢ We simplify the code we present to you even further by 

using Stevens-style error-handling wrappers:

pid_t Fork(void)
{

pid_t pid;

if ((pid = fork()) < 0)
unix_error("Fork error");

return pid;
}

pid = Fork(); William Richard Stevens
(1951 – 1999)
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Obtaining Process IDs
¢ pid_t getpid(void)

§ Returns PID of current process

¢ pid_t getppid(void)
§ Returns PID of parent process
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Creating and Terminating Processes
From a programmer’s perspective, we can think of a process 
as being in one of three states

¢ Running
§ Process is either executing, or waiting to be executed and will 

eventually be scheduled (i.e., chosen to execute) by the kernel

¢ Stopped
§ Process execution is suspended and will not be scheduled until 

further notice (next lecture when we study signals)

¢ Terminated
§ Process is stopped permanently
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Terminating Processes
¢ Process becomes terminated for one of three reasons:

§ Receiving a signal whose default action is to terminate 
§ Returning from the main routine
§ Calling the exit function

¢ void exit(int status)
§ Terminates with an exit status of status
§ Convention: normal return status is 0, nonzero on error
§ Another way to explicitly set the exit status is to return an integer 

value from the main routine

¢ exit is called once but never returns.
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Creating Processes
¢ Parent process creates a new running child process by 

calling fork

¢ int fork(void)
§ Returns 0 to the child process, child’s PID to parent process
§ Child is almost identical to parent:

§ Child get an identical (but separate) copy of the parent’s virtual 
address space.

§ Child gets identical copies of the parent’s open file descriptors
§ Child has a different PID than the parent

¢ fork is interesting (and often confusing) because 
it is called once but returns twice
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fork Example

int main()
{

pid_t pid;
int x = 1;

pid = Fork(); 
if (pid == 0) {  /* Child */

printf("child : x=%d\n", ++x); 
exit(0);

}

/* Parent */
printf("parent: x=%d\n", --x); 
exit(0);

}

linux> ./fork
parent: x=0
child : x=2

fork.c

¢ Call once, return twice
¢ Concurrent execution

§ Can’t predict execution 
order of parent and child

¢ Duplicate but separate 
address space
§ x has a value of 1 when 

fork returns in parent and 
child

§ Subsequent changes to x
are independent

¢ Shared open files
§ stdout is the same in 

both parent and child
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Modeling fork with Process Graphs

¢ A process graph is a useful tool for capturing the partial 
ordering of statements in a concurrent program:
§ Each vertex is the execution of a statement
§ a -> b means a happens before b
§ Edges can be labeled with current value of variables
§ printf vertices can be labeled with output
§ Each graph begins with a vertex with no inedges

¢ Any topological sort of the graph corresponds to a feasible 
total ordering. 
§ Total ordering of vertices where all edges point from left to right
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Process Graph Example

int main()
{

pid_t pid;
int x = 1;

pid = Fork(); 
if (pid == 0) {  /* Child */

printf("child : x=%d\n", ++x); 
exit(0);

}

/* Parent */
printf("parent: x=%d\n", --x); 
exit(0);

}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0
exit

Parent

Child

fork.c
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Interpreting Process Graphs
¢ Original graph:

¢ Relabled graph:

child: x=2

main fork printf

printf

x==1

exit

parent: x=0
exit

a b

f

dc

e

a b e c f d

Feasible total ordering:

a b fce d

Infeasible total ordering:
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fork Example: Two consecutive forks

void fork2()
{

printf("L0\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

forks.c
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fork Example: Nested forks in parent

void fork4()
{

printf("L0\n");
if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c
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fork Example: Nested forks in children

void fork5()
{

printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye
printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c
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Reaping Child Processes
¢ Idea

§ When process terminates, it still consumes system resources

§ Examples: Exit status, various OS tables

§ Called a “zombie”

§ Living corpse, half alive and half dead

¢ Reaping
§ Performed by parent on terminated child (using wait or waitpid)

§ Parent is given exit status information

§ Kernel then deletes zombie child process

¢ What if parent doesn’t reap?
§ If any parent terminates without reaping a child, then the orphaned 

child will be reaped by init process (pid == 1)

§ So, only need explicit reaping in long-running processes

§ e.g., shells and servers
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linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
PID TTY          TIME CMD
6585 ttyp9    00:00:00 tcsh
6639 ttyp9    00:00:03 forks
6640 ttyp9    00:00:00 forks <defunct>
6641 ttyp9    00:00:00 ps
linux> kill 6639
[1]    Terminated
linux> ps
PID TTY          TIME CMD
6585 ttyp9    00:00:00 tcsh
6642 ttyp9    00:00:00 ps

Zombie
Example

¢ ps shows child process as 
“defunct” (i.e., a zombie)

¢ Killing parent allows child to be 
reaped by init

void fork7() {
if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n", getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)

; /* Infinite loop */
}

} forks.c
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linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
PID TTY          TIME CMD
6585 ttyp9    00:00:00 tcsh
6676 ttyp9    00:00:06 forks
6677 ttyp9    00:00:00 ps
linux> kill 6676
linux> ps
PID TTY          TIME CMD
6585 ttyp9    00:00:00 tcsh
6678 ttyp9    00:00:00 ps

Non-
terminating
Child Example

¢ Child process still active even 
though parent has terminated

¢ Must kill child explicitly, or else will 
keep running indefinitely

void fork8()
{

if (fork() == 0) {
/* Child */
printf("Running Child, PID = %d\n",

getpid());
while (1)

; /* Infinite loop */
} else {

printf("Terminating Parent, PID = %d\n",
getpid());

exit(0);
}

} forks.c
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wait: Synchronizing with Children
¢ Parent reaps a child by calling the wait function

¢ int wait(int *child_status)
§ Suspends current process until one of its children terminates
§ Return value is the pid of the child process that terminated
§ If child_status != NULL, then the integer it points to will be set 

to  a value that indicates reason the child terminated and the exit 
status:
§ Checked using macros defined in wait.h

– WIFEXITED, WEXITSTATUS, WIFSIGNALED, 
WTERMSIG, WIFSTOPPED, WSTOPSIG, 
WIFCONTINUED

– See textbook for details
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wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC
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Another wait Example
¢ If multiple children completed, will take in arbitrary order
¢ Can use macros WIFEXITED and WEXITSTATUS to get information about 

exit status

void fork10() {
pid_t pid[N];
int i, child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

exit(100+i); /* Child */
}

for (i = 0; i < N; i++) { /* Parent */
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
} forks.c
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waitpid: Waiting for a Specific Process
¢ pid_t waitpid(pid_t pid, int &status, int options)

§ Suspends current process until specific process terminates
§ Various options (see textbook)

void fork11() {
pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */
for (i = N-1; i >= 0; i--) {

pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
} forks.c
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execve: Loading and Running Programs

¢ int execve(char *filename, char *argv[], char *envp[])

¢ Loads and runs in the current process:
§ Executable  file filename

§ Can be object file or script file beginning with #!interpreter          
(e.g., #!/bin/bash)

§ …with argument list argv
§ By convention argv[0]==filename

§ …and  environment variable list envp
§ “name=value” strings (e.g., USER=droh)
§ getenv, putenv, printenv

¢ Overwrites code, data, and stack
§ Retains PID, open files and signal context

¢ Called once and never returns
§ …except if there is an error
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Structure of 
the stack when 
a new program 
starts

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL
envp[n-1]

...
envp[0]

argv[argc] = NULL
argv[argc-1]

...
argv[0]

Future stack frame for
main

environ
(global var)

Bottom of stack

Top of stack

argv
(in %rsi)

envp
(in %rdx)

Stack frame for 
libc_start_main

argc
(in %rdi)
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execve Example

envp[n] = NULL
envp[n-1]

envp[0]
…

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

“/bin/ls”
“-lt”
“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

if ((pid = Fork()) == 0) {   /* Child runs program */
if (execve(myargv[0], myargv, environ) < 0) {                                                        

printf("%s: Command not found.\n", myargv[0]);                                                 
exit(1);                                                                                     

}                                                                                                
}                                                                                                    

¢ Executes “/bin/ls –lt /usr/include” in child process 
using current environment:

(argc == 3)
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Summary
¢ Exceptions

§ Events that require nonstandard control flow
§ Generated externally (interrupts) or internally (traps and faults)

¢ Processes
§ At any given time, system has multiple active processes
§ Only one can execute at a time on a single core, though
§ Each process appears to have total control of 

processor + private memory space
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Summary (cont.)
¢ Spawning processes

§ Call fork
§ One call, two returns

¢ Process completion
§ Call exit
§ One call, no return

¢ Reaping and waiting for processes
§ Call wait or waitpid

¢ Loading and running programs
§ Call execve (or variant)
§ One call, (normally) no return
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Outline
¢ Exceptions

§ Hardware and operating system kernel software

¢ Process Context Switch
§ Hardware timer and kernel software

¢ Signals
§ Kernel software and application software
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Linux Process Hierarchy

Login shell

ChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Login shell

Child

… ……

Note: you can view the 
hierarchy using the Linux 
pstree command
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Shell Programs
¢ A shell is an application program that runs programs on behalf 

of the user.
§ sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
§ csh/tcsh BSD Unix C shell
§ bash “Bourne-Again” Shell (default Linux shell)

int main()
{

char cmdline[MAXLINE]; /* command line */

while (1) {
/* read */
printf("> ");
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))

exit(0);

/* evaluate */
eval(cmdline);

}
}

Execution is a 
sequence of 
read/evaluate 
steps

shellex.c
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Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE];   /* Holds modified command line */
int bg;              /* Should the job run in bg or fg? */
pid_t pid;           /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return;   /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) {   /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.c
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Problem with Simple Shell Example
¢ Our example shell correctly waits for and reaps foreground 

jobs

¢ But what about background jobs?
§ Will become zombies when they terminate
§ Will never be reaped because shell (typically) will not terminate
§ Will create a memory leak that could run the kernel out of memory
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ECF to the Rescue!
¢ Solution: Exceptional control flow

§ The kernel will interrupt regular processing to alert us when a background 
process completes

§ In Unix, the alert mechanism is called a signal
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Signals
¢ A signal is a small message that notifies a process that an 

event of some type has occurred in the system
§ Akin to exceptions and interrupts
§ Sent from the kernel (sometimes at the request of another process) to a 

process
§ Signal type is identified by small integer ID’s (1-30)
§ Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c 
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated
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Signal Concepts: Sending a Signal
¢ Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination process

¢ Kernel sends a signal for one of the following reasons:
§ Kernel has detected a system event such as divide-by-zero (SIGFPE) or 

the termination of a child process (SIGCHLD)
§ Another process has invoked the kill system call to explicitly request 

the kernel to send a signal to the destination process
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Signal Concepts: Receiving a Signal
¢ A destination process receives a signal when it is forced by 

the kernel to react in some way to the delivery of the signal

¢ Some possible ways to react:
§ Ignore the signal (do nothing)
§ Terminate the process (with optional core dump)
§ Catch the signal by executing a user-level function called signal handler

§ Akin to a hardware exception handler being called in response to an 
asynchronous interrupt:

(2) Control passes 
to signal handler 

(3) Signal  
handler runs

(4) Signal handler
returns to 
next instruction

Icurr
Inext

(1) Signal received 
by process 
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Signal Concepts: Pending and Blocked Signals

¢ A signal is pending if sent but not yet received
§ There can be at most one pending signal of any particular type
§ Important: Signals are not queued

§ If a process has a pending signal of type k, then subsequent signals of 
type k that are sent to that process are discarded

¢ A process can block the receipt of certain signals
§ Blocked signals can be delivered, but will not be received until the signal 

is unblocked

¢ A pending signal is received at most once
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Signal Concepts: Pending/Blocked Bits

¢ Kernel maintains pending and blocked bit vectors in the 
context of each process
§ pending: represents the set of pending signals

§ Kernel sets bit k in pending when a signal of type k is delivered
§ Kernel clears bit k in pending when a signal of type k is received 

§ blocked: represents the set of blocked signals
§ Can be set and cleared by using the sigprocmask function
§ Also referred to as the signal mask.
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Sending Signals: Process Groups
¢ Every process belongs to exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground 
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return process group of current process

setpgid()
Change process group of a process (see 
text for details)



781

Sending Signals with /bin/kill Program
¢ /bin/kill program 

sends arbitrary signal to a 
process or process group

¢ Examples
§ /bin/kill –9 24818

Send SIGKILL to process 24818

§ /bin/kill –9 –24817
Send SIGKILL to every process 
in process group 24817

linux> ./forks 16 
Child1: pid=24818 pgrp=24817 
Child2: pid=24819 pgrp=24817 

linux> ps
PID TTY          TIME CMD 

24788 pts/2    00:00:00 tcsh
24818 pts/2    00:00:02 forks 
24819 pts/2    00:00:02 forks 
24820 pts/2    00:00:00 ps
linux> /bin/kill -9 -24817 
linux> ps
PID TTY          TIME CMD 

24788 pts/2    00:00:00 tcsh
24823 pts/2    00:00:00 ps
linux> 
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Sending Signals from the Keyboard
¢ Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every 

job in the foreground process group.
§ SIGINT – default action is to terminate each process 
§ SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground 
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20
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Example of ctrl-c and ctrl-z
bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>
Suspended
bluefish> ps w
PID TTY      STAT   TIME COMMAND

27699 pts/8    Ss     0:00 -tcsh
28107 pts/8    T      0:01 ./forks 17
28108 pts/8    T      0:01 ./forks 17
28109 pts/8    R+     0:00 ps w
bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w
PID TTY      STAT   TIME COMMAND

27699 pts/8    Ss     0:00 -tcsh
28110 pts/8    R+     0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more 
details
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Sending Signals with kill Function
void fork12()
{

pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

/* Child: Infinite Loop */
while(1)

;
}

for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

}

for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
} forks.c
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Receiving Signals
¢ Suppose kernel is returning from an exception handler 

and is ready to pass control to process B

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time
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Receiving Signals
¢ Suppose kernel is returning from an exception handler 

and is ready to pass control to process B

¢ Kernel computes pnb = pending & ~blocked
§ The set of pending nonblocked signals for process B

¢ If  (pnb == 0) 
§ Pass control to next instruction in the logical flow for process B

¢ Else
§ Choose least nonzero bit k in pnb and force process B to receive

signal k
§ The receipt of the signal triggers some action by process B
§ Repeat for all nonzero k in pnb
§ Pass control to next instruction in logical flow for process B
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Default Actions
¢ Each signal type has a predefined default action, which is one 

of:
§ The process terminates
§ The process stops until restarted by a SIGCONT signal
§ The process ignores the signal
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Installing Signal Handlers
¢ The signal function modifies the default action associated 

with the receipt of signal signum:
§ handler_t *signal(int signum, handler_t *handler)

¢ Different values for handler:
§ SIG_IGN: ignore signals of type signum
§ SIG_DFL: revert to the default action on receipt of signals of type signum
§ Otherwise, handler is the address of a user-level signal handler

§ Called when process receives signal of type signum
§ Referred to as “installing” the handler
§ Executing handler is called “catching” or “handling” the signal
§ When the handler executes its return statement, control passes back 

to instruction in the control flow of the process that was interrupted 
by receipt of the signal
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Signal Handling Example
void sigint_handler(int sig) /* SIGINT handler */
{

printf("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
printf("Well...");
fflush(stdout);
sleep(1);
printf("OK. :-)\n");
exit(0);

}

int main()
{

/* Install the SIGINT handler */
if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");

/* Wait for the receipt of a signal */
pause();

return 0;
} sigint.c
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Signals Handlers as Concurrent Flows
¢ A signal handler is a separate logical flow (not process) that 

runs concurrently with the main program

Process A 

while (1)
;

Process A

handler(){
…

}

Process B

Time
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Another View of Signal Handlers as 
Concurrent Flows

Signal delivered
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext
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Nested Signal Handlers
¢ Handlers can be interrupted by other handlers

(2) Control passes 
to handler S

Main program

(5) Handler T
returns to 
handler S

Icurr

Inext

(1) Program 
catches signal s

Handler S Handler T

(3) Program 
catches signal t

(4)  Control passes 
to handler T

(6) Handler S
returns to 
main 
program

(7) Main program 
resumes 
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Blocking and Unblocking Signals
¢ Implicit blocking mechanism

§ Kernel blocks any pending signals of type currently being handled. 
§ E.g., A SIGINT handler can’t be interrupted by another SIGINT

¢ Explicit blocking and unblocking mechanism
§ sigprocmask function

¢ Supporting functions
§ sigemptyset – Create empty set
§ sigfillset – Add every signal number to set
§ sigaddset – Add signal number to set
§ sigdelset – Delete signal number from set
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Temporarily Blocking Signals

sigset_t mask, prev_mask;

Sigemptyset(&mask);
Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…
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Safe Signal Handling
¢ Handlers are tricky because they are concurrent with 

main program and share the same global data structures.
§ Shared data structures can become corrupted.

¢ We’ll explore concurrency issues later in the term.

¢ For now here are some guidelines to help you avoid 
trouble. 
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Guidelines for Writing Safe Handlers
¢ G0: Keep your handlers as simple as possible

§ e.g., Set a global flag and return
¢ G1: Call only async-signal-safe functions in your handlers

§ printf, sprintf,  malloc, and exit are not safe!
¢ G2: Save and restore errno on entry and exit

§ So that other handlers don’t overwrite your value of errno
¢ G3: Protect accesses to shared data structures by temporarily 

blocking all signals. 
§ To prevent possible corruption

¢ G4: Declare global variables as volatile
§ To prevent compiler from storing them in a register

¢ G5: Declare global flags as volatile sig_atomic_t
§ flag: variable that is only read or written (e.g. flag = 1, not flag++)
§ Flag declared this way does not need to be protected  like other globals
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Async-Signal-Safety
¢ Function is async-signal-safe if either reentrant (e.g., all 

variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals.

¢ Posix guarantees 117 functions to be async-signal-safe 
§ Source: “man 7 signal”
§ Popular functions on the list:

§ _exit, write, wait, waitpid, sleep, kill
§ Popular functions that are not on the list:

§ printf,  sprintf, malloc, exit 
§ Unfortunate fact: write is the only async-signal-safe output function
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Safely Generating Formatted Output
¢ Use the reentrant SIO (Safe I/O library) from csapp.c

§ ssize_t sio_puts(char s[]) /* Put string */
§ ssize_t sio_putl(long v)   /* Put long */
§ void sio_error(char s[])   /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */
{

Sio_puts("So you think you can stop the bomb with ctrl-
c, do you?\n");

sleep(2);
Sio_puts("Well...");
sleep(1);
Sio_puts("OK. :-)\n");
_exit(0);

} sigintsafe.c
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¢ Pending signals are 
not queued
§ For each signal type, one 

bit indicates whether or 
not signal is pending…

§ …thus at most one 
pending signal of any 
particular type. 

¢ You can’t use signals 
to count events, such as 
children terminating.

int ccount = 0;
void child_handler(int sig) {

int olderrno = errno;
pid_t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");
ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");
sleep(1);
errno = olderrno;

}

void fork14() {
pid_t pid[N];
int i;
ccount = N;
Signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++) {
if ((pid[i] = Fork()) == 0) {

Sleep(1);
exit(0);  /* Child exits */

}
}
while (ccount > 0) /* Parent spins */

;
} forks.c

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241

Correct Signal Handling
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Correct Signal Handling
¢ Must wait for all terminated child processes

§ Put wait in a loop to reap all terminated children

void child_handler2(int sig)
{

int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {

ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");

}
if (errno != ECHILD)

Sio_error("wait error");
errno = olderrno;

} whaleshark> ./forks 15
Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>
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Portable Signal Handling
¢ Ugh! Different versions of Unix can have different signal 

handling semantics
§ Some older systems restore action to default after catching signal
§ Some interrupted system calls can return with errno == EINTR
§ Some systems don’t block signals of the type being handled 

¢ Solution: sigaction

handler_t *Signal(int signum, handler_t *handler)
{

struct sigaction action, old_action;

action.sa_handler = handler;
sigemptyset(&action.sa_mask); /* Block sigs of type being handled */
action.sa_flags = SA_RESTART; /* Restart syscalls if possible */

if (sigaction(signum, &action, &old_action) < 0)
unix_error("Signal error");

return (old_action.sa_handler);
} csapp.c
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Synchronizing Flows to Avoid Races

int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, prev_all;

Sigfillset(&mask_all);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (1) {
if ((pid = Fork()) == 0) { /* Child */

Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */
addjob(pid);  /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
exit(0);

}

¢ Simple shell with a subtle synchronization error because it 
assumes parent runs before child.

procmask1.c
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Synchronizing Flows to Avoid Races

void handler(int sig)
{

int olderrno = errno;
sigset_t mask_all, prev_all;
pid_t pid;

Sigfillset(&mask_all);
while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */

Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
deletejob(pid); /* Delete the child from the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
if (errno != ECHILD)

Sio_error("waitpid error");
errno = olderrno;

}

¢ SIGCHLD handler for a simple shell

procmask1.c
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Corrected Shell Program without Race
int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, mask_one, prev_one;

Sigfillset(&mask_all);
Sigemptyset(&mask_one);
Sigaddset(&mask_one, SIGCHLD);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (1) {
Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
if ((pid = Fork()) == 0) { /* Child process */

Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve("/bin/date", argv, NULL);

}
Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */
addjob(pid);  /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_one, NULL);  /* Unblock SIGCHLD */

}
exit(0);

} procmask2.c
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Explicitly Waiting for Signals

volatile sig_atomic_t pid;

void sigchld_handler(int s)
{

int olderrno = errno;
pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint_handler(int s)
{
}

¢ Handlers for program explicitly waiting for SIGCHLD to arrive.

waitforsignal.c
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Explicitly Waiting for Signals
int main(int argc, char **argv) {

sigset_t mask, prev;
Signal(SIGCHLD, sigchld_handler);
Signal(SIGINT, sigint_handler);
Sigemptyset(&mask);
Sigaddset(&mask, SIGCHLD);

while (1) {
Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */

exit(0);
/* Parent */
pid = 0;
Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */
while (!pid)

;
/* Do some work after receiving SIGCHLD */
printf(".");

}
exit(0);

} waitforsignal.c

Similar to a shell waiting
for a foreground job to 
terminate. 
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Explicitly Waiting for Signals
¢ Program is correct, but very wasteful
¢ Other options:

¢ Solution: sigsuspend

while (!pid) /* Too slow! */
sleep(1);

while (!pid)  /* Race! */
pause();
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Waiting for Signals with sigsuspend

sigprocmask(SIG_BLOCK, &mask, &prev);
pause();
sigprocmask(SIG_SETMASK, &prev, NULL);

¢ int sigsuspend(const sigset_t *mask)

¢ Equivalent to atomic (uninterruptable) version of:



809

Waiting for Signals with sigsuspend
int main(int argc, char **argv) {

sigset_t mask, prev;
Signal(SIGCHLD, sigchld_handler);
Signal(SIGINT, sigint_handler);
Sigemptyset(&mask);
Sigaddset(&mask, SIGCHLD);

while (1) {
Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */

exit(0);

/* Wait for SIGCHLD to be received */
pid = 0;
while (!pid)

Sigsuspend(&prev);

/* Optionally unblock SIGCHLD */
Sigprocmask(SIG_SETMASK, &prev, NULL);
/* Do some work after receiving SIGCHLD */
printf(".");

}
exit(0);

} sigsuspend.c



810

Concurrent Programming
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Concurrent Programming is Hard!

¢ The human mind tends to be sequential

¢ The notion of time is often misleading

¢ Thinking about all possible sequences of events in a 
computer system is at least error prone and frequently 
impossible
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Concurrent Programming is Hard!

¢ Classical problem classes of concurrent programs:
§ Races: outcome depends on arbitrary scheduling decisions 

elsewhere in the system
§ Example: who gets the last seat on the airplane?

§ Deadlock: improper resource allocation prevents forward progress
§ Example: traffic gridlock

§ Livelock / Starvation / Fairness: external events and/or system 
scheduling decisions can prevent sub-task progress
§ Example: people always jump in front of you in line

¢ Many aspects of concurrent programming are beyond the 
scope of our course..
§ but, not all J
§ We’ll cover some of these aspects in the next few lectures. 
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Iterative Servers

¢ Iterative servers process one request at a time

Client 1 Server Client 2
connect

accept connect

write read
call read

close

accept

write

read

close Wait for server 
to finish with  
Client 1

call read

write

ret read

writeret read
read
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Where Does Second Client Block?
¢ Second client attempts to 

connect to iterative server
¢ Call to connect returns

§ Even though connection not 
yet accepted

§ Server side TCP manager 
queues request

§ Feature known as “TCP listen 
backlog”

¢ Call to rio_writen returns
§ Server side TCP manager 

buffers input data

¢ Call to rio_readlineb blocks
§ Server hasn’t written anything 

for it to read yet.

Client
socket

rio_readlineb

rio_writen

Connection
request

open_clientfd

connect
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Fundamental Flaw of Iterative Servers

¢ Solution: use concurrent servers instead
§ Concurrent servers use multiple concurrent flows to serve multiple 

clients at the same time

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to read 
from server

Server blocks
waiting for
data from
Client 1

Client 1 Server Client 2

connect

accept connect

write call read
call read

write

call read
writeret read

call read
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Fundamental Flaw of Iterative Servers
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Approaches for Writing Concurrent Servers
Allow server to handle multiple clients concurrently

1. Process-based
§ Kernel automatically interleaves multiple logical flows
§ Each flow has its own private address space

2. Event-based
§ Programmer manually interleaves multiple logical flows
§ All flows share the same address space
§ Uses technique called I/O multiplexing. 

3. Thread-based
§ Kernel automatically interleaves multiple logical flows
§ Each flow shares the same address space
§ Hybrid of of process-based and event-based. 
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Approach #1: Process-based Servers
¢ Spawn separate process for each client

client 1 server client 2

call connect
call accept

call read

ret accept call connect

call fgets
forkchild 1

User goes out 
to lunch

Client 1 blocks
waiting for 
user to type in 
data

call accept
ret accept

call fgets

writefork

call 
read

child 2

write

call read

ret read
close

close

...

Child blocks 
waiting for 
data from 
Client 1



819

int main(int argc, char **argv)
{

int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);
listenfd = Open_listenfd(argv[1]);
while (1) {

clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
if (Fork() == 0) {

Close(listenfd); /* Child closes its listening socket */
echo(connfd);    /* Child services client */
Close(connfd);   /* Child closes connection with client */
exit(0);         /* Child exits */

}
Close(connfd); /* Parent closes connected socket (important!) */

}
}

Process-Based Concurrent Echo Server

echoserverp.c
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Process-Based Concurrent Echo Server
(cont)

void sigchld_handler(int sig)
{ 

while (waitpid(-1, 0, WNOHANG) > 0)
;

return;
}

§ Reap all zombie children

echoserverp.c
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Concurrent Server: accept Illustrated
listenfd(3)

Client
1. Server blocks in accept, 
waiting for connection 
request on listening 
descriptor listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection 
request by calling connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from 
accept. Forks child to handle 
client.  Connection is now 
established between clientfd
and connfd

Server
Child

connfd(4)
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Client 2 data

Process-based Server Execution Model

§ Each client handled by independent child process
§ No shared state between them
§ Both parent & child have copies of listenfd and connfd

§ Parent must close connfd
§ Child should close listenfd

Client 1
server

process

Client 2
server

process

Listening
server

process

Connection requests

Client 1 data
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Issues with Process-based Servers

¢ Listening server process must reap zombie children
§ to avoid fatal memory leak

¢ Parent process must close its copy of connfd
§ Kernel keeps reference count for each socket/open file
§ After fork, refcnt(connfd) = 2
§ Connection will not be closed until refcnt(connfd) = 0
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Pros and Cons of Process-based Servers

¢ + Handle multiple connections concurrently
¢ + Clean sharing model

§ descriptors (no)
§ file tables (yes)
§ global variables (no)

¢ + Simple and straightforward
¢ – Additional overhead for process control
¢ – Nontrivial to share data between processes

§ Requires IPC (interprocess communication) mechanisms
§ FIFO’s (named pipes),  System V shared memory and semaphores
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Approach #2: Event-based Servers

¢ Server maintains set of active connections
§ Array of connfd’s

¢ Repeat:
§ Determine which descriptors (connfd’s or listenfd) have pending inputs

§ e.g., using select or epoll functions
§ arrival of pending input is an event

§ If  listenfd has input, then accept connection
§ and add new connfd to array

§ Service all connfd’s with pending inputs

¢ Details for select-based server in book
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I/O Multiplexed Event Processing

10

connfd’s

7

4

-1
-1

12

5

-1

-1

-1

0
1
2
3
4
5
6
7
8
9

Active

Inactive

Active

Never Used

listenfd = 3 

10

connfd’s

7

4

-1

-1

12
5

-1

-1

-1

listenfd = 3 
Active Descriptors Pending Inputs

Read and service
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Pros and Cons of Event-based Servers

¢ + One logical control flow and address space.
¢ + Can single-step with a debugger.
¢ + No process or thread control overhead.

§ Design of choice for high-performance Web servers and search 
engines. e.g., Node.js, nginx, Tornado

¢ – Significantly more complex to code than process- or thread-
based designs.

¢ – Hard to provide fine-grained concurrency
§ E.g., how to deal with partial HTTP request headers

¢ – Cannot take advantage of multi-core
§ Single thread of control
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Approach #3: Thread-based Servers

¢ Very similar to approach #1 (process-based)
§ …but using threads instead of processes
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Traditional View of a Process

¢ Process = process context + code, data, and stack

Shared libraries

Run-time heap

0

Read/write data

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code, data, and stack

Read-only code/data

Stack
SP

PC

brk

Process context

Kernel context:
VM structures
Descriptor table
brk pointer
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Alternate View of a Process

¢ Process = thread + code, data, and kernel context

Shared libraries

Run-time heap

0

Read/write dataThread context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:
VM structures
Descriptor table
brk pointer
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A Process With Multiple Threads
¢ Multiple threads can be associated with a process

§ Each thread has its own logical control flow 
§ Each thread shares the same code, data, and kernel context
§ Each thread has its own stack for local variables 

§ but not protected from other threads
§ Each thread has its own thread id (TID)

Thread 1 context:
Data registers
Condition codes
SP1
PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

Thread 2 context:
Data registers
Condition codes
SP2
PC2

stack 2

Thread 2 (peer thread)
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Logical View of Threads

¢ Threads associated with process form a pool of peers
§ Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context
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Concurrent Threads

¢ Two threads are concurrent if their flows overlap in time
¢ Otherwise, they are sequential

¢ Examples:
§ Concurrent: A & B, A&C
§ Sequential: B & C

Time

Thread A Thread B Thread C
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Concurrent Thread Execution
¢ Single Core Processor

§ Simulate parallelism by 
time slicing

¢ Multi-Core Processor
§ Can have true parallelism

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores
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Threads vs. Processes
¢ How threads and processes are similar

§ Each has its own logical control flow
§ Each can run concurrently with others (possibly on different cores)
§ Each is context switched

¢ How threads and processes are different
§ Threads share all code and data (except local stacks)

§ Processes (typically) do not
§ Threads are somewhat less expensive than processes

§ Process control (creating and reaping) twice as expensive as thread 
control

§ Linux numbers:
– ~20K cycles to create and reap a process
– ~10K cycles (or less) to create and reap a thread
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Posix Threads (Pthreads) Interface
¢ Pthreads: Standard interface for ~60 functions that 

manipulate threads from C programs
§ Creating and reaping threads

§ pthread_create()
§ pthread_join()

§ Determining your thread ID
§ pthread_self()

§ Terminating threads
§ pthread_cancel()
§ pthread_exit()
§ exit() [terminates all threads] , RET [terminates current thread]

§ Synchronizing access to shared variables
§ pthread_mutex_init
§ pthread_mutex_[un]lock
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void *thread(void *vargp) /* thread routine */
{

printf("Hello, world!\n");
return NULL;                 

} 

The Pthreads "hello, world" Program
/*                                                                                                               
* hello.c - Pthreads "hello, world" program                                                                     
*/
#include "csapp.h"
void *thread(void *vargp);                    

int main()
{

pthread_t tid;                            
Pthread_create(&tid, NULL, thread, NULL); 
Pthread_join(tid, NULL);                  
exit(0);                                  

}

Thread attributes 
(usually NULL)

Thread arguments
(void *p) 

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c
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Execution of Threaded “hello, world”
Main thread

Peer thread

return NULL;Main thread waits for 
peer  thread to terminate

exit()
Terminates 

main thread and 
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread
terminates

Pthread_create() returns
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Thread-Based Concurrent Echo Server
int main(int argc, char **argv)
{

int listenfd, *connfdp;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
pthread_t tid;

listenfd = Open_listenfd(argv[1]);
while (1) {

clientlen=sizeof(struct sockaddr_storage);
connfdp = Malloc(sizeof(int)); 
*connfdp = Accept(listenfd, 

(SA *) &clientaddr, &clientlen); 
Pthread_create(&tid, NULL, thread, connfdp);

}
} echoservert.c

§ malloc of connected descriptor necessary to avoid 
deadly race (later)
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Thread-Based Concurrent Server (cont)

/* Thread routine */
void *thread(void *vargp)
{

int connfd = *((int *)vargp);
Pthread_detach(pthread_self()); 
Free(vargp);                    
echo(connfd);
Close(connfd);
return NULL;

}

§ Run thread in “detached” mode.
§ Runs independently of other threads
§ Reaped automatically (by kernel) when it terminates

§ Free storage allocated to hold connfd.
§ Close connfd (important!)

echoservert.c
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Thread-based Server Execution Model

§ Each client handled by individual peer thread
§ Threads share all process state except TID
§ Each thread has a separate stack for local variables

Client 1
server 

peer
thread

Client 2
server
peer

thread

Listening
server

main thread

Connection requests

Client 1 data Client 2 data
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Issues With Thread-Based Servers

¢ Must run “detached” to avoid memory leak
§ At any point in time, a thread is either joinable or detached
§ Joinable thread can be reaped and killed by other threads

§ must be reaped (with pthread_join) to free memory resources
§ Detached thread cannot be reaped or killed by other threads

§ resources are automatically reaped on termination
§ Default state is joinable

§ use pthread_detach(pthread_self()) to make detached
¢ Must be careful to avoid unintended sharing

§ For example, passing pointer to main thread’s stack
§ Pthread_create(&tid, NULL, thread, (void *)&connfd);

¢ All functions called by a thread must be thread-safe
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Pros and Cons of Thread-Based Designs
¢ + Easy to share data structures between threads

§ e.g., logging information, file cache

¢ + Threads are more efficient than processes

¢ – Unintentional sharing can introduce subtle and hard-
to-reproduce errors!
§ The ease with which data can be shared is both the greatest 

strength and the greatest weakness of threads
§ Hard to know which data shared & which private
§ Hard to detect by testing

§ Probability of bad race outcome very low
§ But nonzero!

§ Future lectures
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Summary: Approaches to Concurrency
¢ Process-based

§ Hard to share resources: Easy to avoid unintended sharing
§ High overhead in adding/removing clients

¢ Event-based
§ Tedious and low level
§ Total control over scheduling
§ Very low overhead
§ Cannot create as fine grained a level of concurrency
§ Does not make use of multi-core

¢ Thread-based
§ Easy to share resources: Perhaps too easy
§ Medium overhead
§ Not much control over scheduling policies
§ Difficult to debug

§ Event orderings not repeatable
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Synchronization
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Shared Variables in Threaded C Programs
¢ Question: Which variables  in a threaded C program are 

shared?
§ The answer is not as simple as “global variables are shared” and 

“stack variables are private”

¢ Def: A variable x is shared if and only if multiple threads 
reference some instance of x. 

¢ Requires answers to the following questions:
§ What is the memory model for threads?
§ How are instances of variables mapped to memory?
§ How many threads might reference each of these instances?
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Threads Memory Model
¢ Conceptual model:

§ Multiple threads run within the context of a single process
§ Each thread has its own separate thread context

§ Thread ID, stack, stack pointer, PC, condition codes, and GP registers

§ All threads share the remaining process context
§ Code, data, heap, and shared library segments of the process virtual address space
§ Open files and installed handlers

¢ Operationally, this model is not strictly enforced:
§ Register values are truly separate and protected, but…
§ Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model 
is a source of confusion and errors
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Example Program to Illustrate Sharing
char **ptr;  /* global var */

int main()
{

long i;
pthread_t tid;
char *msgs[2] = {

"Hello from foo",
"Hello from bar"

};

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid, 
NULL, 
thread, 
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{

long myid = (long)vargp;
static int cnt = 0;

printf("[%ld]:  %s (cnt=%d)\n", 
myid, ptr[myid], ++cnt);

return NULL;
}

Peer threads reference main thread’s stack
indirectly through global ptr variable

sharing.c
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Mapping Variable Instances to Memory
¢ Global variables

§ Def: Variable declared outside of a function
§ Virtual memory contains exactly one instance of any global variable

¢ Local variables
§ Def: Variable declared inside function without  static attribute
§ Each thread stack contains one instance of each local variable

¢ Local static variables
§ Def: Variable declared inside  function with the static attribute
§ Virtual memory contains exactly one instance of any local static 

variable. 
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char **ptr;  /* global var */

int main()
{

long i;
pthread_t tid;
char *msgs[2] = {

"Hello from foo",
"Hello from bar"

};

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid, 
NULL, 
thread, 
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{

long myid = (long)vargp;
static int cnt = 0;

printf("[%ld]:  %s (cnt=%d)\n", 
myid, ptr[myid], ++cnt);

return NULL;
}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local vars: 1 instance (i.m, msgs.m)

Local var: 2 instances (
myid.p0 [peer thread 0’s stack],
myid.p1 [peer thread 1’s stack]

)

sharing.c
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Shared Variable Analysis
¢ Which variables are shared?

¢ Answer: A variable x is shared iff multiple threads 
reference at least one instance of x. Thus:
n ptr,  cnt, and msgs are shared
n i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes
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Synchronizing Threads
¢ Shared variables are handy...

¢ …but introduce the possibility of nasty synchronization
errors.
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badcnt.c: Improper Synchronization
/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{

long niters;
pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)                                                                                        
{                                                                                                                

long i, niters = 
*((long *)vargp);                                                                           

for (i = 0; i < niters; i++)
cnt++;                   

return NULL;                                                                                                 
} 

linux> ./badcnt 10000
OK cnt=20000
linux> ./badcnt 10000
BOOM! cnt=13051
linux>

cnt should equal 20,000.

What went wrong?badcnt.c
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Assembly Code for Counter Loop

for (i = 0; i < niters; i++)
cnt++; 

C code for counter loop in thread i

movq (%rdi), %rcx
testq %rcx,%rcx
jle .L2
movl $0, %eax

.L3:
movq cnt(%rip),%rdx
addq $1, %rdx
movq %rdx, cnt(%rip)
addq $1, %rax
cmpq %rcx, %rax
jne .L3

.L2:

Hi : Head

Ti : Tail

Li  : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i
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Concurrent Execution
¢ Key idea: In general, any sequentially consistent interleaving 

is possible, but some give an unexpected result!
§ Ii denotes that thread i executes instruction I
§ %rdxi is the content of %rdx in thread i’s context

H1
L1
U1
S1
H2
L2
U2
S2
T2
T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

Thread 1 
critical section

Thread 2 
critical section
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Concurrent Execution (cont)
¢ Incorrect ordering: two threads increment the counter, 

but the result is 1 instead of 2

H1
L1
U1
H2
L2
S1
T1
U2
S2
T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%rdx1
-
-
-
-
0
-
-
1
1
1

%rdx2

Oops!
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Concurrent Execution (cont)
¢ How about this ordering?

¢ We can analyze the behavior using a progress graph

H1
L1
H2
L2
U2
S2
U1
S1
T1
T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt%rdx1 %rdx2

0
0

0
1
1 1

1
1 1

1 Oops!
1
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Progress Graphs
A progress graph depicts
the discrete execution 
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2)  denotes state
where  thread 1 has
completed L1 and thread
2 has completed S2.H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2) 
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Trajectories in Progress Graphs

A trajectory is a sequence of legal 
state transitions that describes one 
possible concurrent execution of the 
threads.

Example:

H1, L1, U1, H2, L2,  S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2
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Critical Sections and Unsafe Regions

L, U, and S form a critical 
section with respect to the 
shared variable cnt

Instructions in critical 
sections (wrt some shared 
variable) should not be 
interleaved

Sets of states where such 
interleaving occurs form 
unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical 
section 

wrt
cnt

Unsafe region
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Critical Sections and Unsafe Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical 
section 

wrt
cnt

Unsafe region

Def: A trajectory is safe  iff it does 
not enter any unsafe region

Claim: A trajectory is  correct (wrt
cnt)  iff it is safe

unsafe

safe
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Enforcing Mutual Exclusion
¢ Question: How can we guarantee a safe trajectory?

¢ Answer: We must synchronize the execution of the threads so 
that they can never have an unsafe trajectory.
§ i.e., need to guarantee mutually exclusive access for each critical 

section.

¢ Classic solution: 
§ Semaphores (Edsger Dijkstra)

¢ Other approaches (out of our scope)
§ Mutex and condition variables (Pthreads)
§ Monitors (Java)
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Semaphores
¢ Semaphore: non-negative global integer synchronization variable. 

Manipulated by P and V operations. 
¢ P(s)

§ If s is nonzero, then decrement s by 1 and return immediately. 
§ Test and decrement operations occur atomically (indivisibly)

§ If s is zero, then suspend thread until s becomes nonzero and the thread is 
restarted by a V operation. 

§ After restarting, the P operation decrements s and returns control to the 
caller. 

¢ V(s): 
§ Increment s by 1. 

§ Increment operation occurs atomically
§ If there are any threads blocked in a P operation waiting for s to become non-

zero, then restart exactly one of those threads, which then completes its P 
operation by decrementing s. 

¢ Semaphore invariant: (s >= 0)
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C Semaphore Operations

Pthreads functions:
#include <semaphore.h>

int sem_init(sem_t *s, 0, unsigned int val);} /* s = val */

int sem_wait(sem_t *s);  /* P(s) */
int sem_post(sem_t *s);  /* V(s) */

CS:APP wrapper functions:
#include "csapp.h”

void P(sem_t *s); /* Wrapper function for sem_wait */
void V(sem_t *s); /* Wrapper function for sem_post */
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badcnt.c: Improper Synchronization
/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{

long niters;
pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)                                                                                        
{                                                                                                                

long i, niters = 
*((long *)vargp);                                                                           

for (i = 0; i < niters; i++)
cnt++;                   

return NULL;                                                                                                 
} 

How can we fix this using 
semaphores?

badcnt.c
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Using Semaphores for Mutual Exclusion
¢ Basic idea:

§ Associate a unique semaphore mutex, initially 1, with each shared 
variable (or related set of shared variables).

§ Surround corresponding critical sections with P(mutex) and 
V(mutex) operations.

¢ Terminology:
§ Binary semaphore: semaphore whose value is always 0 or 1
§ Mutex: binary semaphore used for mutual exclusion

§ P operation: “locking” the mutex
§ V operation: “unlocking” or “releasing” the mutex
§ “Holding” a mutex: locked and not yet unlocked. 

§ Counting semaphore: used as a counter for set of available 
resources.
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goodcnt.c: Proper Synchronization
¢ Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0;  /* Counter */
sem_t mutex;            /* Semaphore that protects cnt */

Sem_init(&mutex, 0, 1); /* mutex = 1 */

¢ Surround critical section with P and V:
for (i = 0; i < niters; i++) {

P(&mutex);
cnt++;
V(&mutex);

}

linux> ./goodcnt 10000
OK cnt=20000
linux> ./goodcnt 10000
OK cnt=20000
linux>

Warning: It’s orders of magnitude slower 
than badcnt.c.

goodcnt.c
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Unsafe region

Why Mutexes Work
Provide mutually exclusive 
access to shared variable by 
surrounding critical section 
with  P and V operations on 
semaphore s (initially set to 1)

Semaphore invariant 
creates a forbidden region
that encloses unsafe region 
and that cannot be entered by 
any trajectory.

H1 P(s) V(s) T1
Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

Forbidden region
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Summary
¢ Programmers need a clear model of how variables are shared 

by threads. 

¢ Variables shared by multiple threads must be protected to 
ensure mutually exclusive access.

¢ Semaphores are a fundamental mechanism for enforcing 
mutual exclusion. 
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Review: Semaphores
¢ Semaphore: non-negative global integer synchronization 

variable. Manipulated by P and V operations. 
¢ P(s)

§ If s is nonzero, then decrement s by 1 and return immediately. 
§ If s is zero, then suspend thread until s becomes nonzero and the thread 

is restarted by a V operation. 
§ After restarting, the P operation decrements s and returns control to the 

caller. 
¢ V(s): 

§ Increment s by 1. 
§ If there are any threads blocked in a P operation waiting for s to become 

non-zero, then restart exactly one of those threads, which then 
completes its P operation by decrementing s. 

¢ Semaphore invariant: (s >= 0)
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Review: Using semaphores to protect shared 
resources via mutual exclusion
¢ Basic idea:

§ Associate a unique semaphore mutex, initially 1, with each shared 
variable (or related set of shared variables)

§ Surround each access to the shared variable(s) with P(mutex) and 
V(mutex) operations

mutex = 1

P(mutex)
cnt++
V(mutex)



872

Using Semaphores to Coordinate Access to 
Shared Resources

¢ Basic idea: Thread uses a semaphore operation to notify 
another thread that some condition has become true
§ Use counting semaphores to keep track of resource state and to 

notify other threads
§ Use mutex to protect access to resource

¢ Two classic examples:
§ The Producer-Consumer Problem
§ The Readers-Writers Problem
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Producer-Consumer Problem

¢ Common synchronization pattern:
§ Producer waits for empty slot, inserts item in buffer, and notifies consumer
§ Consumer waits for item, removes it from buffer, and notifies producer

¢ Examples
§ Multimedia processing:

§ Producer creates MPEG video frames, consumer renders them 
§ Event-driven graphical user interfaces

§ Producer detects mouse clicks, mouse movements, and keyboard hits 
and inserts corresponding events in buffer

§ Consumer retrieves events from buffer and paints the display

Producer
thread

Shared
buffer

Consumer
thread
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Producer-Consumer on an n-element Buffer
¢ Requires a mutex and two counting semaphores:

§ mutex: enforces mutually exclusive access to the the buffer
§ slots: counts the available slots in the buffer
§ items: counts the available items in the buffer

¢ Implemented using a shared buffer package called sbuf. 
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sbuf Package - Declarations

#include "csapp.h”

typedef struct {
int *buf;          /* Buffer array */
int n;             /* Maximum number of slots */
int front;         /* buf[(front+1)%n] is first item */
int rear;          /* buf[rear%n] is last item */
sem_t mutex;       /* Protects accesses to buf */
sem_t slots;       /* Counts available slots */
sem_t items;       /* Counts available items */

} sbuf_t;

void sbuf_init(sbuf_t *sp, int n);
void sbuf_deinit(sbuf_t *sp);
void sbuf_insert(sbuf_t *sp, int item);
int sbuf_remove(sbuf_t *sp); sbuf.h
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sbuf Package - Implementation

/* Create an empty, bounded, shared FIFO buffer with n slots */
void sbuf_init(sbuf_t *sp, int n)
{

sp->buf = Calloc(n, sizeof(int));
sp->n = n;                    /* Buffer holds max of n items */
sp->front = sp->rear = 0;     /* Empty buffer iff front == rear */
Sem_init(&sp->mutex, 0, 1);   /* Binary semaphore for locking */
Sem_init(&sp->slots, 0, n);   /* Initially, buf has n empty slots */
Sem_init(&sp->items, 0, 0);   /* Initially, buf has 0 items */

}

/* Clean up buffer sp */
void sbuf_deinit(sbuf_t *sp)
{

Free(sp->buf);
} sbuf.c

Initializing and deinitializing a shared buffer:
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sbuf Package - Implementation

/* Insert item onto the rear of shared buffer sp */
void sbuf_insert(sbuf_t *sp, int item)
{

P(&sp->slots);                         /* Wait for available slot */
P(&sp->mutex);                         /* Lock the buffer */
sp->buf[(++sp->rear)%(sp->n)] = item;  /* Insert the item */
V(&sp->mutex);                         /* Unlock the buffer */
V(&sp->items);                         /* Announce available item */

} sbuf.c

Inserting an item into a shared buffer:



878

sbuf Package - Implementation

/* Remove and return the first item from buffer sp */
int sbuf_remove(sbuf_t *sp)
{

int item;
P(&sp->items);                         /* Wait for available item */
P(&sp->mutex);                         /* Lock the buffer */
item = sp->buf[(++sp->front)%(sp->n)]; /* Remove the item */
V(&sp->mutex);                         /* Unlock the buffer */
V(&sp->slots);                         /* Announce available slot */
return item;

} sbuf.c

Removing an item from a shared buffer:
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Readers-Writers Problem
¢ Generalization of the mutual exclusion problem

¢ Problem statement:
§ Reader threads only read the object
§ Writer threads modify the object
§ Writers must have exclusive access to the object
§ Unlimited number of readers can access the object

¢ Occurs frequently in real systems, e.g.,
§ Online airline reservation system
§ Multithreaded caching Web proxy
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Variants of Readers-Writers
¢ First readers-writers problem (favors readers)

§ No reader should be kept waiting unless a writer has already been 
granted permission to use the object

§ A reader that arrives after a waiting writer gets priority over the writer

¢ Second readers-writers problem (favors writers)
§ Once a writer is ready to write, it performs its write as soon as possible 
§ A reader that arrives after a writer must wait, even if the writer is also 

waiting 

¢ Starvation (where a thread waits indefinitely) is possible in 
both cases 
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Solution to First Readers-Writers Problem
int readcnt;    /* Initially = 0 */
sem_t mutex, w; /* Initially = 1 */

void reader(void)
{

while (1) {
P(&mutex);
readcnt++;
if (readcnt == 1) /* First in */

P(&w);
V(&mutex);

/* Critical section */
/* Reading happens */

P(&mutex);
readcnt--;
if (readcnt == 0) /* Last out */

V(&w);
V(&mutex);

}
}

void writer(void)
{

while (1) {
P(&w);

/* Critical section */
/* Writing happens */

V(&w);
}

}

Readers: Writers:

rw1.c
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Putting It All Together: Prethreaded
Concurrent Server

Master
thread Buffer

...Accept
connections

Insert
descriptors Remove

descriptors

Worker
thread

Worker
thread

Client

Client

...

Service client

Service client

Pool of 
worker
threads
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Prethreaded Concurrent Server
sbuf_t sbuf; /* Shared buffer of connected descriptors */

int main(int argc, char **argv)
{

int i, listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
pthread_t tid;

listenfd = Open_listenfd(argv[1]);
sbuf_init(&sbuf, SBUFSIZE); 
for (i = 0; i < NTHREADS; i++)  /* Create worker threads */

Pthread_create(&tid, NULL, thread, NULL);               
while (1) {

clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
sbuf_insert(&sbuf, connfd); /* Insert connfd in buffer */

}
}

echoservert_pre.c
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Prethreaded Concurrent Server

void *thread(void *vargp)
{

Pthread_detach(pthread_self());
while (1) {

int connfd = sbuf_remove(&sbuf); /* Remove connfd from buf */
echo_cnt(connfd);                /* Service client */
Close(connfd);

}
} echoservert_pre.c

Worker thread routine: 
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Prethreaded Concurrent Server

static int byte_cnt;  /* Byte counter */
static sem_t mutex;   /* and the mutex that protects it */

static void init_echo_cnt(void)
{

Sem_init(&mutex, 0, 1);
byte_cnt = 0;

}
echo_cnt.c

echo_cnt initialization routine:
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Prethreaded Concurrent Server

void echo_cnt(int connfd)
{

int n;
char buf[MAXLINE];
rio_t rio;
static pthread_once_t once = PTHREAD_ONCE_INIT;

Pthread_once(&once, init_echo_cnt); 
Rio_readinitb(&rio, connfd);        
while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

P(&mutex);
byte_cnt += n; 
printf("thread %d received %d (%d total) bytes on fd %d\n",

(int) pthread_self(), n, byte_cnt, connfd); 
V(&mutex);
Rio_writen(connfd, buf, n);

}
}

Worker thread service routine:

echo_cnt.c
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Crucial concept: Thread Safety
¢ Functions called from a thread must be thread-safe

¢ Def:  A function is thread-safe iff it will always produce 
correct results when called repeatedly from multiple 
concurrent threads

¢ Classes of thread-unsafe functions:
§ Class 1: Functions that do not protect shared variables
§ Class 2: Functions that keep state across multiple invocations
§ Class 3: Functions that return a pointer to a static variable
§ Class 4: Functions that call thread-unsafe functions J
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Thread-Unsafe Functions (Class 1)
¢ Failing to protect shared variables

§ Fix: Use P and V semaphore operations
§ Example: goodcnt.c
§ Issue: Synchronization operations will slow down code
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Thread-Unsafe Functions (Class 2)
¢ Relying on persistent state across multiple function invocations

§ Example: Random number generator that relies on static state 

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void)
{

next = next*1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed)
{

next = seed;
}
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Thread-Safe Random Number Generator

¢ Pass state as part of argument
§ and, thereby, eliminate global state 

¢ Consequence: programmer using rand_r must maintain seed

/* rand_r - return pseudo-random integer on 0..32767 */

int rand_r(int *nextp)
{

*nextp = *nextp * 1103515245 + 12345;
return (unsigned int)(*nextp/65536) % 32768;

}
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Thread-Unsafe Functions (Class 3)
¢ Returning a pointer  to a 

static variable
¢ Fix 1.  Rewrite function so 

caller passes address of 
variable to store result
§ Requires changes in caller and 

callee

¢ Fix 2. Lock-and-copy
§ Requires simple changes in 

caller (and none in callee)
§ However, caller must free 

memory. 

/* lock-and-copy version */
char *ctime_ts(const time_t *timep,

char *privatep)
{

char *sharedp;

P(&mutex);
sharedp = ctime(timep);
strcpy(privatep, sharedp);
V(&mutex);
return privatep;

}
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Thread-Unsafe Functions (Class 4)
¢ Calling thread-unsafe functions

§ Calling one thread-unsafe function makes the entire function that calls it 
thread-unsafe

§ Fix: Modify the function so it calls only thread-safe functions J
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Reentrant Functions
¢ Def: A function is reentrant iff it accesses no shared 

variables when called by multiple threads. 
§ Important subset of thread-safe functions

§ Require no synchronization operations
§ Only way to make a Class 2 function thread-safe is to make it 

reetnrant (e.g., rand_r )

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions
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Thread-Safe Library Functions
¢ All functions in the Standard C Library (at the back of your 

K&R text) are thread-safe
§ Examples: malloc, free, printf, scanf

¢ Most Unix system calls are thread-safe, with a few 
exceptions:

Thread-unsafe function Class Reentrant version
asctime 3 asctime_r
ctime 3 ctime_r
gethostbyaddr 3 gethostbyaddr_r
gethostbyname 3 gethostbyname_r
inet_ntoa 3 (none)
localtime 3 localtime_r
rand 2 rand_r
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One worry: Races
¢ A race occurs when correctness of the program depends on one 

thread reaching point x before another thread reaches point y
/* A threaded program with a race */
int main()
{

pthread_t tid[N];
int i;

for (i = 0; i < N; i++)
Pthread_create(&tid[i], NULL, thread, &i); 

for (i = 0; i < N; i++)
Pthread_join(tid[i], NULL);

exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{

int myid = *((int *)vargp);  
printf("Hello from thread %d\n", myid);
return NULL;

} race.c

N threads are sharing i
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Race Illustration

Main thread

Peer thread 0

for (i = 0; i < N; i++)
Pthread_create(&tid[i], NULL, thread, &i); 

i = 0

myid = *((int *)vargp)i = 1 Race!

¢ Race between increment of i in main thread and deref of 
vargp in peer thread:
§ If deref happens while i = 0, then OK
§ Otherwise, peer thread gets wrong id value
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Could this race really occur?

int i;
for (i = 0; i < 100; i++) {

Pthread_create(&tid, NULL,
thread,&i);

}

¢ Race Test
§ If no race, then each thread would get different value of i
§ Set of saved values would consist of one copy each of 0 through 99

Main thread
void *thread(void *vargp) {

Pthread_detach(pthread_self());
int i = *((int *)vargp);
save_value(i);
return NULL;

}

Peer thread

race.c
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Experimental Results

¢ The race can really happen!

No Race

Multicore server

0
1
2
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Single core laptop
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Race Elimination
/* Threaded program without the race */
int main()
{

pthread_t tid[N];
int i, *ptr;

for (i = 0; i < N; i++) {
ptr = Malloc(sizeof(int));                    
*ptr = i;                                     
Pthread_create(&tid[i], NULL, thread, ptr);   

}
for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{

int myid = *((int *)vargp);
Free(vargp);
printf("Hello from thread %d\n", myid);
return NULL;

} norace.c

¢ Avoid unintended sharing of 
state
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Another worry: Deadlock
¢ Def: A process is deadlocked iff it is waiting for a condition 

that will never be true

¢ Typical Scenario
§ Processes 1 and 2 needs two resources (A and B) to proceed
§ Process 1 acquires A, waits for B
§ Process 2 acquires B, waits for A
§ Both will wait forever!
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Deadlocking With Semaphores
int main()
{

pthread_t tid[2];
Sem_init(&mutex[0], 0, 1);  /* mutex[0] = 1 */
Sem_init(&mutex[1], 0, 1);  /* mutex[1] = 1 */
Pthread_create(&tid[0], NULL, count, (void*) 0);
Pthread_create(&tid[1], NULL, count, (void*) 1);
Pthread_join(tid[0], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d\n", cnt);
exit(0);

}

void *count(void *vargp)
{

int i;
int id = (int) vargp;
for (i = 0; i < NITERS; i++) {

P(&mutex[id]); P(&mutex[1-id]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);

}
return NULL;

}

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s1);
P(s0);
cnt++;
V(s1);
V(s0);
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Deadlock Visualized in Progress Graph
Locking introduces  the
potential for deadlock: 
waiting for a condition that will 
never be true

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for either 
s0 or s1 to become nonzero

Other trajectories luck out and 
skirt the deadlock region

Unfortunate fact: deadlock is 
often nondeterministic (race)Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s1)

P(s0)

V(s0) Forbidden region
for s0

Forbidden region
for s1

Deadlock
state

Deadlock
region

s0=s1=1
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Avoiding Deadlock
int main() 
{

pthread_t tid[2];
Sem_init(&mutex[0], 0, 1);  /* mutex[0] = 1 */
Sem_init(&mutex[1], 0, 1);  /* mutex[1] = 1 */
Pthread_create(&tid[0], NULL, count, (void*) 0);
Pthread_create(&tid[1], NULL, count, (void*) 1);
Pthread_join(tid[0], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d\n", cnt);
exit(0);

}

void *count(void *vargp) 
{

int i;
int id = (int) vargp;
for (i = 0; i < NITERS; i++) {

P(&mutex[0]); P(&mutex[1]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);

}
return NULL;

}

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s0);
P(s1);
cnt++;
V(s1);
V(s0);

Acquire shared resources in same order
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Avoided Deadlock in Progress Graph

Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s0)

P(s1)

V(s0)
Forbidden region
for s0

Forbidden region
for s1

s0=s1=1

No way for trajectory to get 
stuck

Processes acquire locks in 
same order

Order in which locks released 
immaterial


